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HIGH ENERGY TWO-PHOTON INTERACTIONS AT THE LHC
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Two-photon events at the LHC are characterized by the protons scattered at very small
angles and the particles centrally produced via the γγ fusion. To select these events from the
huge samples of generic pp interactions a detection of the scattered protons, or tagging two-
photon interactions is necessary. It requires installation of the high-resolution position-
sensitive detectors close to the proton beam and far from the interaction point. Efficient
measurement of the forward-scattered protons will open a new field of studying high-energy
photon-photon interactions at remarkable luminosity, reaching 1% of that in pp collisions. In
this paper a few aspects of tagging two-photon interactions as well as several most exciting
topics in the high-energy two-photon physics at the LHC are presented.
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Introduction

Recently, a method of tagging two-photon interactions at the LHC has been pro-

posed 1). These interactions, to a good approximation, proceed in two steps: first, the

photons are emitted by incoming protons, and then the photons collide producing a

system X. The method is based on the measurement of the forward scattered protons

using detectors similar to those planned for measurements of the elastic pp scattering

at the LHC 2). The final state X will be detected in the central detectors as in the CMS

experiment. Tagging is essential for extraction of high-energy two-photon

interactions, at the γγ center of mass energy W even beyond 1 TeV. A significant

luminosity of the tagged two-photon interactions will allow for new, complementary

physics studies at the LHC, in particular for searches for new phenomena. In general

two-photon events are cleaner than the pp ones and usually the final state is fully

contained within acceptance of the central detectors. Particularly interesting are those

events where only two or one heavy particle is exclusively produced via the γγ fusion

as in the γγ → H0 case, for example.  The event reconstruction can usually be more

precise than for the generic pp collisions, and it corresponds more to the experimental

conditions at the e+e− colliders. In fact, also the considered physics topics in high-

energy γγ collisions are closely related to the subjects studied at the e+e− colliders – in

particular to the physics studies planned for the future γγ collider 3). One should note

that of course the photon collider offers much higher luminosity, but a lower energy

reach than that available in the two-photon collisions at the LHC. Last but not least,

the two-photon physics will be done parasitically to the mainstream physics program,

and will complement it, at a very limited incremental cost.

The content of this paper has two major ingredients. First, after a short

introduction of the tagging technique several experimental issues are discussed, in

particular those relevant for estimates of the effective γγ luminosity. Secondly, the

most interesting physics topics are discussed, with emphasis on the exclusive

production of the Higgs boson and pairs of the charged SUSY particles.
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Tagging Aspects

In two-photon processes protons are scattered at angles comparable to the beam

angular divergence at the interaction point (IP). The scattered protons can however be

measured when a fraction of the initial proton energy, x, carried away by a photon is

significant. In such a case these protons are more strongly deflected by the beam-line

magnets and can be detected in the so-called Roman pots installed far away from the

IP and close to the proton beam (see Fig. 1). The detectors are capable of measuring

the distance of the scattered proton and its momentum direction with respect to the

proton beam at a given location.

Figure 1. Sketch of the LHC beam-line with the proposed localization of the Roman pot detectors for
tagging two-photon events; Q and D symbols stand for the machine quadrupoles and dipoles.

At some 240 m from the IP, the relations between the detector variables and the

scattered proton energy and angle at the IP, are particularly simple.  The distance in

the horizontal plane ∆x measures then the proton energy loss, hence the tagged

photon energy. Other measured variables, direction of the proton momentum in the

horizontal plane θx and distance from the beam axis in the vertical plane ∆y are used

to reconstruct the proton scattering angle at the IP (from its two projections, θx
* and
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θy
*) as schematically presented is in Tab. 1. The beam dispersion at this location, D,

is of about 100 mm.

Variable at the IP Detector variable @ 240 m

θx
* 3θx

 θy
* 100 [µrad/mm] ∆y

x ∆x/D

Table 1. Relations between ‘true’ variables at the IP and the detector variables according to
the LHC beam optics v6.0, where D ≈100 mm.

The photon virtuality Q2 can then be calculated using Q2 ≅  (1−x)E2[(θx
*)2 +(θy

*)2],

where E is the beam energy, and the photon energy is equal to xE.

The tagging efficiency is determined by minimum distance between the detector

sensitive edge and the proton beam. For small beam widths, a 1 mm minimum

detector approach is usually required to ensure enough space for the beam steering 2).

At the recently advocated detector location at about 240 m 1,4) the horizontal beam

width is small and the 1 mm distance corresponds to a minimum tagged photon

energy of 70 GeV, that is to 1% of the beam energy. If the maximum tagged energy

of 700 GeV and, the maximum virtuality, Q2
max = 2 GeV2, of the colliding photons

are assumed, one obtains the tagged effective luminosity spectra as a function of W 1),

see Fig. 2. The double tagging corresponds to the case when the two scattered

protons are detected, whereas the single tagging occurs when only one proton is

detected. In such a case, however also those two-photon events are tagged where one

proton dissociates and does not survive the interaction. In fact, these inelastic two-

photon events have even higher effective luminosity than the nominal, elastic events,

and the total luminosity available for the tagged two-photon collisions is significant,

reaching 1% of the pp luminosity for W > 100 GeV. One should also note that the

luminosity spectrum extends to a very large W, even beyond 1 TeV. The detector

approach of 1 mm assumed above in fact requires an edgeless detector, i.e. a detector

sensitive right from its mechanical edge. This might be considered too optimistic and
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instead one can conservatively consider a 2 mm distance between the detector

sensitive edge and the beam.

Figure 2. Tagged photon-photon luminosity spectrum Sγγ and its integral ∫W0 dW Sγγ, assuming double tags
(shaded histograms) and single tags, for all events (solid line) and for elastic events (dashed line); above for
a 1 mm and below for a 2 mm approach.

In Fig. 2 the luminosity spectra and their integrals (equal to the probability of γγ

collisions in a pp single collision) are shown also for that case, demonstrating that the

single-tagged spectrum is modestly affected, whereas the low W part of the double-
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tagged spectrum is as expected suppressed. This shows that the tagging efficiency

does not critically depend on the closest approach to the proton beam.

Figure 3. Tagged photon-photon luminosity spectrum Sγγ and its integral ∫W0 dW Sγγ, assuming double tags

(shaded histograms) and single tags, for all events (solid line) and for elastic events (dashed line); all for a

1 mm approach but assuming for the inelastic events MN  < 7000 GeV.

So far, following Ref. 1), for the inelastic production the maximum dissociation mass

MN  of 20 GeV has been assumed. Allowing for the interactions more inelastic and

MN, for example, as large as 7000 GeV significantly increases the effective γγ

luminosity, see Fig. 3. Virtuality of the photon coupled to the inelastic vertex also

increases – for the additional events (with MN > 20 GeV) the average Q2 is about 150

GeV2, resulting in a significant pT of the system X. Reconstruction of these events is

more difficult and requires detailed studies. One should also note that for the high-Q2

events the contribution from the Z exchange is not negligible.

Two-photon interactions in ion collisions are enhanced owing to the coherence

effects 5). At low W the enhancement scales as Z4 but with increasing W it becomes

weaker resulting in incoherent production (~Z2) at large W. Tagging γγ interactions is
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however not very practical in this case. It is then restricted to a very large W domain

where the coherent interactions are much suppressed and γγ luminosity is small.

Figure 4. Tagged luminosity spectrum Sγγ and its integral ∫W0 dW Sγγ  for pAr collisions and single tagging,
assuming elastic production and a 1 mm approach.

Situation is different for proton-ion collisions, where the scattered proton can be

detected in the same manner as in the pp case, and the single-tagged luminosity is

high, especially below W ≈ 100 GeV where the enhancement is still significant. For

example, almost 50% of the proton-Argon luminosity LpAr is available for γγ

collisions at W > 50 GeV (see Fig. 4), and LpAr itself might reach values close to 1032

cm-2s-1. The luminosity of the tagged γγ events at medium W might be therefore

comparable to that in the pp collisions. In addition, tagging in pA collisions can be

used to check γγ event selection in the AA collisions. The untagged γγ luminosity in

the ArAr collisions is high and competitive for W < 100 GeV 5).

Finally, two-photon exclusive production of lepton pairs will be an excellent

monitoring tool for the tagging efficiency and its energy scale. These events can be

selected using a standard CMS di-muon trigger and be used off-line for a number of

systematic studies, including the luminosity normalization and contribution of the

inelastic production, or the accidental tagging.
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Physics Highlights

Exclusive production of heavy particles will possibly be the most exciting subject in

two-photon research at the LHC. In particular, the Higgs boson might be observed in

γγ collisions at the LHC − as can be seen in Fig. 5, it will be statistically limited and

will not be a discovery channel, it will however bring new, relevant information. The

events are very central, usually within the acceptance of the CMS tracking (|η|<2.5),

therefore high overall detection efficiency is expected. The ‘irreducible’ background

due to the b-quark, W and Z pair production, for the respective decay channels, is

comparable to the signal for a few GeV window in the γγ center-of-mass energy.

Figure 5. (Above) Number of the Standard Model Higgs boson events as a function of its mass, exclusively
produced in γγ collisions for the integrated  pp, pA and AA luminosity of 30 fb-1, 300 and 30 pb-1,
respectively; the event distributions for the major decay modes, H0 → bb, W+W− and ZZ − all branching
ratios and widths obtained with the HDECAY 2.0 program 6) . (Below) The pseudo-rapidity distribution of
the b-quark from the Higgs boson decays for MH = 120 GeV.
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The W and Z boson pair production in the γγ collisions at the LHC is interesting

on its own right. The number of the produced W pairs will be similar to that at LEP II

but at much higher center-of-mass energy – for example, about 3000 W-pairs will be

tagged at W > 500 GeV for the integrated pp luminosity of 30 fb-1. This will allow for

precision tests of the γWW coupling and for new physics searches, as for example

signatures of Large Extra Dimensions 7). The Z pair two-photon production is much

suppressed in the Standard Model but an interesting search for the anomalous γZZ

coupling can also be performed.

The exclusive tt two-photon production will be statistically limited – only about

one hundred events will be tagged for the ‘canonical’ luminosity. The observed cross-

section, which is proportional to the fourth power of the particle charge, will however

directly and precisely measure the top charge.

It has been recently argued 8) that a measurement of the two-photon production of

photon pairs at very high transverse momenta at the LHC can be used for searching

for the Dirac monopoles. Tagging two-photon events will certainly improve the

reconstruction of these events, decrease systematic uncertainties and will help to

suppress the backgrounds.

If supersymmetric particles are found at the LHC then the sparticle pairs produced

in γγ collisions can be used to test the structure and parameters of the underlying

theory. The two-photon production of pairs of the charged sparticles is particularly

simple – it is a pure QED process. In Fig. 6, the number of the tagged spairs is plotted

as a function of the sparticle mass, assuming a simplified scenario of the degenerate

sleptons, i.e. the equal masses for the left- and right-handed sleptons 9). It shows that

the charginos might be detected up to the masses of about 300 GeV, and the sleptons

and charged Higgs bosons up to the masses of about 200 GeV, covering a significant

fraction of benchmark spectra of the minimal SUSY 10). Studies of the tagged two-

photon production will be complementary and less model-dependant with respect to

the nominal analyses of the complex final states and decay chains. In addition, the

photon energy measurement will improve the reconstruction of event kinematics.
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Figure 6. Number of pairs of the charginos, sleptons and charged Higgs bosons produced in the single
tagged two-photon interactions, plotted against the mass of the produced sparticle.

In conclusion, a few new aspects of tagging two-photon production at the LHC

discussed in this paper provide a further strong motivation for work towards a

technical realization of this proposal. The initial survey of topics in high-energy two-

photon physics shows that this research program will be a significant and

complementary extension of the nominal physics program at the LHC.

Finally, the same tagging technique can also be utilized to select γp, or γq and γg,

interactions at the LHC, for which the energy reach and the effective luminosity are

even higher than for the γγ case. The initial study of this experimental opportunity is

a subject of the publication in preparation.
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